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Abstract

Studies of coastal seas in Europe have brought forth the high variability in the CO2
system. This high variability, generated by the complex mechanisms driving the CO2
fluxes makes their accurate estimation an arduous task. This is more pronounced in the
Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed5

as in the open oceans. In adition, the joint availability of in-situ measurements of CO2
and of sea-surface satellite data is limited in the area. In this paper, a combination of
two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to
estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface tempera-
ture, chlorophyll, coloured dissolved organic matter, net primary production and mixed10

layer depth. The outputs of this research have an horizontal resolution of 4 km, and
cover the period from 1998 to 2011. The reconstructed pCO2 values over the valida-
tion data set have a correlation of 0.93 with the in-situ measurements, and a root mean
square error is of 38 µatm. The removal of any of the satellite parameters degraded
this reconstruction of the CO2 flux, and we chose therefore to complete any missing15

data through statistical imputation. The CO2 maps produced by this method also pro-
vide a confidence level of the reconstruction at each grid point. The results obtained
are encouraging given the sparsity of available data and we expect to be able to pro-
duce even more accurate reconstructions in the coming years, in view of the predicted
acquisitions of new data.20

1 Introduction

The ocean plays an important role as a major carbon reservoir for carbon dioxide (CO2)
emitted to the atmosphere from fossil fuel burning, cement production, biomass burn-
ing, deforestation and other land use change. The ocean is at present acting to slow the
rate of climate change by absorbing about 30 % of human emissions of CO2 emitted25

to the atmosphere since the industrial revolution (Stocker et al., 2013). The exchange
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of CO2 between coastal environments and the atmosphere is significant for the global
carbon budget (e.g. Borges et al., 2005; Chen and Borges, 2009; Laruelle et al., 2010).
The estimation of the overall sink of CO2 in continental shelf sea is −0.22 Pg C yr−1

(Laruelle et al., 2010), corresponding to 16 % of the open oceanic sink (Takahashi
et al., 2009), while continental shelves only represent 7 % of the oceanic surface area5

and less than 0.5 % of the ocean volume. These estimates are prone to a large uncer-
tainty related to sparse data coverage in time and space. The monitoring of the oceanic
partial pressure of CO2 (pCO2) at monthly and seasonal time scale is essential to esti-
mate the regional and global air-sea CO2 flux and improve this uncertainty. Due to tech-
nical as well as financial restrictions, in situ measurements of marine pCO2 are sparse10

in spatial and temporal distribution. However, over the last decade, technical improve-
ments and cooperation with the shipping industry have allowed for the installation of
several autonomous underway systems on board commercial vessels routinely cross-
ing the ocean basin. Those instruments perform quasi-continuous measurements, of-
fering temporal and spatial coverage which allows for regional analysis of the highly15

variable spatial and temporal distribution of pCO2 (e.g. Lefèvre et al., 2004; Lüger
et al., 2004; Corbière et al., 2007; Schneider et al., 2003). In spite of the increased
number of measurements in the Baltic Sea, the assessment of the carbon fluxes in
the Baltic Sea remains particularly challenging due to the non-linearity of the emis-
sion and absorption system. Neural network techniques can be generally described20

as empirical statistical tools that resolve, to a certain degree, the nonlinear and often
discontinuous relationships among proxy parameters without any a priori assumptions.
In the past decade a handful of authors have reported the application of an neuronal
network technique to basin-scale pCO2 sea analysis (Lefévre et al., 2005; Jamet et al.,
2007; Friedrich and Oschlies, 2009; Telszewski et al., 2009), concentrating mainly on25

the North Atlantic Ocean. Most recently, (Telszewski et al., 2009) successfully applied
a self-organizing-map (SOM) based neuronal network technique to reconstruct pCO2
sea distribution in the North Atlantic (10.5◦ to 75.5◦ N, 9.5◦ E to 75.5◦ W) for three years
(2004 to 2006) by examining non-linear/discontinuous relationship between pCO2 sea
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and ocean parameters of sea surface temperature (SST), mixed layer depth (MLD),
and chlorophyll a concentration (CHL). One of the main benefits of this approach over
the more traditional techniques, such as multiple linear regression (MLR), is that there
are numerous empirical relationships established (e.g., 2220 in Telszewski et al., 2009)
between examined parameters, allowing for more accurate representation of the highly5

variable system of interconnected water properties. In this paper, we departed from
a similar, but rougher SOM classification of the available explicative oceanic parame-
ters in the Baltic sea. Making the assumption that the explicative parameters of each
of the obtained classes could locally be considered to be linearly related to the pCO2,
we performed a MLR of the pCO2 from these explicative parameters in each of the re-10

trieved classes. The purpose of the method developed is to use the classes and MLR
parameters calculated for each class, to estimate the pCO2 in the Baltic Sea and to
improve the estimation of air-sea CO2 fluxes in the future. The manuscript has been
structured in four parts. In the first part we present a synopsis of the problem studied,
including the existing studies performed on the reconstruction of the pCO2 in other15

maritime regions. We followed that with a presentation of the available data and a brief
description of the methodologies used. In the third part of the article we presented
our results, namely the topological maps obtained as well as the reconstructions per-
formed with them. We concluded the article with a discussion on the results obtained
and future possible improvements.20

2 Materials and methods

2.1 Study area

The Baltic Sea is a semi-enclosed sea with limited exchange with the North Atlantic
through the North Sea–Skagerrak system. Previous investigations from the Baltic
Proper showed large variability of pCO2 in time and in space. The amplitude of the an-25

nual cycle of pCO2 varies significantly depending on the region (Schneider and Kaitala,
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2006) between 400 µatm and 120 µatm respectively in North eastern Baltic Proper and
in the transition areas to the North Sea. It receives a significant river runoff from sur-
rounding land (a total of about 15 000 m3 s−1 (Bergstrom, 1994) and a net precipitation
rate of about 1500 m3 s−1 (Omstedt et al., 2004). This large freshwater addition bring
large amounts of nutrients and inorganic and organic carbon (Omstedt et al., 2004;5

Hjalmarsson et al., 2008). The biogeochemical processes in the marine environment
of the Baltic Sea are mainly controlled by the biological production and decomposition
of organic matter taking place in the context of the hydrography of the region. Physi-
cal forcing controls water transport, stratification, temperature and salinity in the Baltic
Sea; these then influence the distribution of nutrients and carbon and thus have an im-10

pact on biogeochemical processes. The Baltic Sea system can be divided into several
sub-bassins (Baltic Proper, Gulf of Riga, Gulf of Finland, Bothnian Sea and Bothnian
Bay) seen in Fig. 1 from Omstedt et al. (2009). The average depth of the Baltic Sea is
55 m with a maximum depth of 460 m at the Landsort Deep (Wesslander, 2011).

2.2 pCO2 observations15

We used the compilation of pCO2 data from three different sources.

1. The Östergarnsholm site: this site is located next to the small island Östergar-
nsholm in the central Baltic Sea described in (Rutgersson et al., 2008; Norman
et al., 2013). The measurements of pCO2 has been running since 2005, 4 km from
the East coast of Gotland. Sea surface temperature (SST) and pCO2 are mea-20

sured by a SAMI-CO2 sensor (Submersible Autonomous Moored Instrument).
The sensor is located at 4 m depth, 1 km southeast from the tower, and in use
semi-continuously. In addition, SST is also measured by a wave rider buoy (oper-
ated by the Finnish Meteorological Institute) at 0.5 m depth about 4 km southeast
of the tower.25

2. Cargo ship: this data set come from continuous measurements of the surface wa-
ter pCO2. They take place in the Baltic Sea using a fully automated measurement
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system deployed on a cargo ship. The Leibniz Institute for Baltic Sea Research,
Warnemünde, Germany (IOW Institut für Ostseeforschung Warnemünde) has
made continuous measurements of pCO2 at a depth of 5 m on board the cargo
vessel Finnpartner. This ship crosses between Lübeck and Helsinki at a two-day
interval, alternately crossing the eastern and western Gotland Sea (Schneider5

and Kaitala, 2006; Schneider et al., 2009). Data from Finnpartner were taken be-
tween July 2003 to December 2005.

3. Swedish Meteorological and Hydrological Institute (SMHI) data set: pH (measured
with the method from Grasshoff et al., 1999) and alkalinity (TA) (measured by
potentiometric titration described in Grasshoff et al., 1999) are measured con-10

tinuously at a monthly or semi-monthly resolution in the Baltic Sea at different
stations. All data used are from 5 m depth below the surface. The uncertainty for
the pH is ± 0.03 pH units and for the TA is ±5% (Wesslander et al., 2009). pCO2
is estimated from the pH, TA, salinity and temperature measurements and used
the standard CO2SYS program (Lewis and Wallace, 1998) with the same equilib-15

rium constant from Weiss (1974) and Merbach et al. (1973) as refitted by Dickson
and Millero (1987) like in Wesslander et al. (2009).

To apply a neural network method to reconstruct the pCO2 from 1998 to 2011, we used
several satellite data set.

2.3 Remote sensing data20

The satellite data used for this study have different sources. We used a monthly time
resolution and a spatial resolution based from the lower spatial resolution of our prod-
ucts. The lower spatial resolution is the CDOM (Coloured Dissolved Organic Matter)
product.

We used five parameters from different sources:25

SST Sea Surface Temperature: for the SST several products are used, we com-
bine two types of products for 2007 and 2011. For 2005–2011: we used the
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data from Federal Maritime and Hydrographic Agency (BSH) processing the
data from AVHRR-NOAA for 2005–2011 and the data from GRHSST (Group for
High Resolution Sea Surface Temperature) product for Baltic Sea 2007–2011.
The spatial resolution is 0.03◦ at daily scale (http://podaac.jpl.nasa.gov/dataset/
DMI-L4UHfnd-NSEABALTIC-DMI_OI). From 1998–2004, the data is a re-analysis5

of the NOAA/NASA Advanced Very High Resolution Radiometer (AVHRR) data
stream conducted by the University of Miami’s Rosenstiel School of Marine and
Atmospheric Science (RSMAS) and the NOAA National Oceanographic Data
Center (NODC). It consists of 4 km monthly SST (in ◦C) extracted from version
5.2 of the AVHRR Pathfinder project (Casey et al., 2010, http://www.nodc.noaa.10

gov/SatelliteData/pathfinder4km/).

Chl Chlorophyll a: The dataset consists of monthly averages from the following sen-
sors: SeaWiFS (September 1998–December 2002) 4 km monthly and MODIS-
Aqua (July 2002–June 2011) 4 km monthly (Casey et al., 2010). A lognormal dis-
tribution was assumed for the Chl.15

CDOM Coloured Dissolved Organic Matter come from MODIS data, at 4 km monthly
average. The CDOM index quantifies the deviation in the relationship between
CDOM and chl concentration, where 1.0 represents the mean relationship for
Morel and Gentili (2009) case 1 waters, and values above or below 1.0 indicate
excess or deficit in CDOM relative to that mean relationship, respectively. The20

algorithm and its application is fully described in Morel and Gentili (2009)

NPP Primary Production come from two products. The first one come from EMIS: This
model is depth-integrated but allows for depth-dependent variability in the dif-
fuse attenuation coefficient, which is calculated from a multiple-component semi-
analytical inversion algorithm (Lee et al., 2005). The primary production calcula-25

tion is based on the formulation obtained through dimensional analysis by Platt
and Sathyendranath (1993).The assignment of the photosynthetic parameters is
achieved by the combined use of a temperature-dependent relationship for the
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maximum growth rate (Eppley, 1972) and a variable formulation to retrieve the
C : Chl following the empirical relation of Cloern et al. (1995). The dataset in
EMIS consists of monthly average values from October 1997 to September 2008.
The second for 2009–2011 is from the Vertically Generalized Production Model
(VGPM) (Behrenfeld and Boss, 2006) as the standard algorithm. The VGPM is5

a “chlorophyll-based” model that estimate net primary production from chloro-
phyll using a temperature-dependent description of chlorophyll-specific photosyn-
thetic efficiency. For the VGPM, net primary production is a function of chlorophyll,
available light, and the photosynthetic efficiency. Standard product are based on
MODIS chlorophyll and temperature data, SeaWiFS PAR, and estimates of eu-10

photic zone depth from a model developed by Morel and Berthon (1989) and
based on chlorophyll concentration. A correction between this two product has be
done for the maximum value.

MLD Mixed Layer Depth: There is also two sources for the MLD. At monthly averages
from 1998 to 2007, come from one3D hydrodynamic model currently used at the15

JRC/IES is the public domain GETM model (General Estuarine Transport Model
– http://www.getm.eu), which has its roots within developments at the JRC/IES
(Burchard and Bolding, 2002). GETM simulates the most important hydrodynamic
and thermodynamic processes in coastal and marine waters and includes flexi-
ble vertical and horizontal coordinate systems. Different turbulence schemes are20

incorporated from the GOTM (General Ocean Turbulence – http://www.gotm.net).
Between 2008 and 2011, we used the data from Carbon-based Production Model
at monthly scale (Behrenfeld et al., 2005).

Some corrections were applied for each parameter of the data to render the different
products coherent between themselves.25

In the Baltic Sea the satellite data have a lot of gaps, due to the high proportion
coastal waters, where the satellite products are less reliable, and the frequent large-
scale cloud coverage. To improve the number of our data we used a monthly time scale
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and we apply a method to improve the spatial distribution. To be used for statistical anal-
ysis, the irregularly-spaced density measurements were first uniformly re-sampled. To
this end, a Gaussian grinding was used, as described in Greengard and Lee (2004);
Dutt and Rokhlin (1995). The data points of the original series are convolved with
a Gaussian kernel. As a result, the data points are smeared over their neighbouring5

equi-spaced points, which are more densely distributed. This type of method produces
more realistic values than simple interpolation, particularly when there are many data
gaps (Schomberg and Timmer, 1995).

2.4 Data available

All the pCO2 data were put together (Fig. 2). We use the spatial resolution of the10

parameter with the lowest resolution for the final product choose (this is CDOM). The
time resolution used for this study is monthly scale. Comparison between pCO2 from
SAMI sensor with the data around the mooring (0.2◦) are done with the other data set
and and give a good correlation factor and (0.98). The data are mainly available in the
Gotland Basin and Arkoria basin but the quantity of data in the Bothnian Sea are very15

low and correspond of two stations from SMHI. The pCO2 data are well distributed
over the twelve months (Fig. 3). January is the month where the number of data is
lower (lower than 80), but for the other month is range between 110 and 155.

In our case, the each data point is characterised by SST, Chl, CDOM, NPP, MLD but
also an information on the date the measurments were taken. This temporal information20

was normalised by sine and cosine, as follows:

T (cosine) = cos
(

Days ·2π
365

)
(1)

T (sine) = sin
(

Days ·2π
365

)
(2)

This definition of time is used to render the values continuous over a year, sidestep-25

ping the artificial numerical transition from the 365th day of the year to the 1rst day
12263
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of the following year, and to therefore be able to situate the process in relation to its
seasonality.

In total, 1445 data of pCO2 were used for this study. Each parameter (SST, Chl,
CDOM, NPP and MLD) was located around each data of pCO2. During winter (October
to March), more data were missing (Table 1, column 1), in particular for Chl, CDOM5

and NPP which is the period when it’s more difficult to measure or estimate these
parameters. Between April and September, the number of data missing for SST, Chl,
CDOM and MLD are relatively low compared to the total amount of data. Missing data
represents less than 3 %. To increase the number of data available, we completed the
data with a training of the topological map. Further detailed is given in Sect. 2.5.10

2.5 Methodology

The relationship between pCO2 and the environmental parameters available is highly
non-linear. As mentioned in the introduction, we chose to combine two statistical ap-
proaches: self-organizing maps (Kohonen, 1990; Dreyfus, 2005) and linear regression.
The SOM are a subfamily of the neuronal networks algorithms, used to perform mul-15

tidimensional classification. One of the defining characteristics of the SOMs is their
ability of their classes to locally represent a gaussian distribution centred around its
typical profile of the environmental parameters. We used this hypothesis to classify the
environmental parameters dataset, and then estimate for each class the parameters
of a linear regression. In the following section we will present an overview of the two20

statistical algorithms and their application to our data sets.

2.5.1 Self organizing maps

Self-organizing topological maps (SOM) is a clustering method based on neural net-
works. They provide a clustering of a learning data set into a reduced number of sub-
sets, called classes, with common statistical characteristics.25
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The generation of a SOM requires the creation of a training database that contains
homogenous vectors. After a training phase, we obtain a Self-Organizing Map. Each
class is represented by its referent vector r i which is an approximation of the mean
value of the elements belonging to it and it index that positions it on the map in rela-
tion to the other classes (Fig. 4). The topological aspect of the maps can be justified5

by considering the map as an undirected graph on a two-dimensional lattice whose
vertices are the N classes. This graph structure permits the definition of a discrete
distance d (Ci ,Cj ) between two classes Ci and Cj , defined as the length of the short-
est path between Ci and Cj on the map. The nature of the SOM training algorithm
forces a topological ordering upon the map and, therefore, any neighbouring classes10

Ci and Cj on the map (d (Ci ,Cj ) = 1) have referent vectors r i and r j that are close in
the Euclidean sense in the data space.

Let us consider a vector x that is of the same dimensions and nature as the data
used to generate the topological map; we can find the index of the class to which it is
classified by choosing: index = arg maxi (||x− r i ||), therefore assigning it to the class15

whose referent is closest to it in the Euclidean sense (Fig. 5). A classified vector x will
be represented by its class index, Cindex. In the case we are trying to classify a vec-
tor that has some missing values, the comparison is performed between the existing
values of x and the corresponding values of each r i .

As a version of the Expectation–Maximization algorithm the SOM algorithm perform20

an iterative training. During the early phases of this training, the referent vectors of
each class are strongly affected by the changes imparted on their neighbours’ refer-
ent vectors in order to capture the shape of the data cloud. Depending on the training
parameters of the SOM, in the latter phases of the training, the effect of the neighbour-
ing vectors on the determination of the referent vector can be considered null. In these25

cases, each referent vector approximates, locally, the mean value of a multidimensional
Gaussian random distribution that generated the training data assigned to that class
(Dreyfus, 2005).
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2.5.2 Multiple linear regression

A multiple linear regression is a modelling method that expresses the value of one
response variable y (in our study pCO2) as a linear function of other explicative vari-
ables X = X1,X2, . . .,Xi (in our study SST, Chl, CDOM, NPP, MLD, timesin, timecos). The
purpose of performing a a multiple linear regression generally is either to interpret the5

relationship of the variable y with each of the other predictive variables Xi , or to predict,
from a dataset of vectors containing the values of X , the corresponding value of y . In
this paper, we used both aspects of MLR.

However, in order to perform our MLRs, we had to take into account their limita-
tions and the nature of our problem. More specifically, in order to perform a MLR we10

are obliged to assume that the relationship between the predictor variables and the re-
sponse variable is linear. However, this is not the case in our data sets. The pCO2 does
not follow a linear relationship with the variables presented when considering the en-
tirety of the problem presented. However as noted above in Sect. 2.5.1, if we consider
the classes created by the SOM, they are very localised regions of the combined ex-15

plicative and response data space that can be considered to approximate, locally, the
mean value of a multidimensional Gaussian random distribution. We therefore make
the assumption that, if performed in the reduced neighbourhood of a SOM class, the
relationship between pCO2 and the explicative variables is linear.

3 Application and results20

3.1 Statistical imputation

As described in Sect. 2.4, the data available for the application were presenting many
missing values. In order to complete them we chose to use an imputation method
similar to those described by Schafer and Graham (2002) and Malek et al. (2008). The
main idea of these methods is to use the classifying abilities of the SOMs in order to25
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regroup the data in typical situations and replace the missing values of the explicative
data with the corresponding values of the referent vector of the class it belongs to.

We first selected the database containing, as mentioned before: SST, Chl, CDOM,
NPP, MLD, timesin, timecos. We then sorted its vectors according to the number of
missing values in them and noting the placement of missing values for each vector. We5

chose all complete data vectors and the first 5 % of the sorted vectors with missing data
and trained a SOM. We proceeded by replacing the missing values of these initial 5 %
with the corresponding values of the referent vector of the class they each belonged
to. We performed the same process by iterativelly increased by 5 % the amount of the
vectors with missing values included in the training of a new SOM, and by replacing10

all missing values, even those completed in previous iterations, by the corresponding
values of the referent vector of the class that each vector with missing values belonged
to. A more detailed presentation of this method is the subject of another forthcoming
article, but a schematic representation version of the imputation method used can be
seen in Fig. 6.15

After this imputation of the missing data through the iterative training give a good
representation of the data as presented in Fig. 7. The repartition of pCO2 (Fig. 7a)
is well representative of the variability of the data with a large range of value. Some
very high in particular local events like a coastal upwelling but most of the data are
range between 180 µatm (value observed in summer) and 550 µatm (observed in win-20

ter). The SST (Fig. 7b) is well representative of the variability in the Baltic Sea with
a maximum of observation between July and September in all the basin around 18 ◦C
(Siegel and Gerth, 2012). The NPP variability is quite homogenous except the pic
at 10 mg C m−2 d−1 this is due to the first model which have is maximum of NPP at
10 mg C m−2 d−1. So the correction on the satellite data of NPP take into account this25

maximum.
The variability of chlorophyll gives a part of data with a low value and an other part

with a higher value than 6 mg m−3, which can be explain by the fact that the Baltic Sea
is a narrow sea so the coast are quite important and the two bloom take place during
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spring/ summer, during this period the value of chlorophyll can be very high, and the
reconstruction give a mean value for this characteristic. A pic at 10 mg m−3 is observed
on the chlorophyll data, this pic is not due to the reconstruction but to the maximum
value in the satellite data file. The low level of MLD occurs in summer and in the model
the minimum is 10 m depth, which appear to be around the minimum value observed on5

the Fig. 7f. Absorption by CDOM decreased with increased distance from the riverine
source and reached a relatively stable absorption background in the open sea. Most of
our data are more in open sea conditions, the value are quite low.

Once the data was completed we could combine the two datasets again and train
the SOM used for the reconstruction of pCO2.10

3.2 pCO2 estimation

3.2.1 Topological map

In this study we classified the explicative variables (SST, Chl, CDOM, NPP, MLD,
timesin, timecos) into classes that share similar characteristics. We separated our data
set in two parts: 90 % of the completed data (1300 vectors) were used for the training15

phase, with the remaining 10 % split into 5 % (72 vectors) for testing and 5 % for the
validation of our method. We iterativelly tested classifications with varying number of
classes, and selected the parameters of our SOM based on the performances on the
test dataset.

At the end of our optimization, we selected a SOM consisting of 77 classes. The20

number of observations captured by each class ranges from 0 to 38 (Fig. 8). The
order of magnitude of the number of observations is constant throughout the SOM,
and we can consider that it has been well deployed to represent the data space of
the explicatory parameters. The presence of classes that did not capture any elements
can be justified as preventive: they preserve the topological aspect of the SOM by25

preventing classes that are not similar enough from becoming neighbours.
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In order to estimate the average concentration of pCO2 in each class, its measure-
ments associated with vectors consisting of SST, CDOM, NPP, MLD and CHL compo-
nents were presented to the already trained SOM as input data (Fig. 9). The average
value computed for the vectors belonging to each class corresponds to the average
value of pCO2 for that class.5

In the final map, the distribution of pCO2 is strongly dependent of the SST distribution
with low values of pCO2 correlating with high value of SST (Fig. 9). This is in agreement
with the seasonal cycle of pCO2, which is characterized by a large amplitude, ranging
from high value in winter (≈500 µatm) and low value in summer (≈150 µatm) Wess-
lander (2011). From Schneider and Kaitala (2006), the high winter value of pCO2 are10

a consequence of mixing with deeper water layer enriched in CO2 which is in agree-
ment with the distribution of the MLD (Fig. 9h) with the higher value during winter and
autumn correlate with the high value of pCO2. Wesslander (2011) explained also that
it can be related to the mineralization, which exceed production in winter. Biological
production starts in spring when sunlight and nutrients are sufficient. The chlorophyll15

begin to increase in March/April due to the spring phytoplankton bloom, which have for
effect to reduce the pCO2 during this period. The more intensive decrease take place in
April and May which is consistent with the higher value of NPP (Fig. 9). The studies in
the central Baltic Sea shows two summer minima, the first is in April/May and a second
July/August which is resulting from a second production period. The higher variability20

are observed during this period with standard deviation between 39 µatm and 50 µatm
from different region (Wesslander, 2011; Schneider and Kaitala, 2006).

3.2.2 Linear regression in the neurons

As mentioned in Sect. 2.5.2, in order to perform a MLR we are obliged to assume that
the relationship between the predictor variables and the response variable is linear,25

which we could only take as a valid hypothesis when performing the MLR in the re-
duced neighbourhood of a SOM class, where the relationship between pCO2 and the
explicative variables can be assumed to be linear.
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For each class j therefore we created a separate training data set containing all
vectors that were assigned to that class and to all its adjacent classes. Based on that
data-set we computed the linear regression coefficient parameters for every explicative
parameter and a constant value.

The calculated linear regression coefficient parameter values for each class are5

shown in Fig. 10. We can notice that all parameters are important in specific regions of
the SOM, having both positive and negative correlations in different classes.

More importantly, the fact that each parameter has a significantly varying range of
values over the different classes demonstrated that each and every parameter is im-
portant in the reconstruction of the pCO2 in the Baltic Sea, even if it is highly significant10

in some particular classes and relatively stable in other regions of the topological map.
The addition of vectors belonging to adjacent classes in general did not perturb the

estimation of the coefficient parameters since, as seen in Fig. 9, the values of all param-
eters are generally organized in a coherent fashion on the map. The assumption that
they are close in the data space is not as robust as it would have been had we solely15

considered the vectors belonging to each class but, given the limited amount of data
available for the modeling of this highly non-linear and complex system, we would not
have sufficient elements to correctly estimate the linear regression coefficients. Given
the projected increase in available data in the coming years, further applications of this
approach will limit themselves to the elements belonging to each class.20

3.2.3 Validation of reconstruction

In order to validate our results, we calculated the difference and the standard deviation
(std) between the value of pCO2 reconstructed in each neurons and the observations
which define the neurons (Fig. 11). In average the std is around 38 µatm and the differ-
ence is observed between 30 to 25 µatm. Nevertheless some points with higher value25

can be identified (in red in Fig. 11). These values are explained by the position of these
points, which are at the edges of the cloud, therefore more likely to include outliers that
disturbed the estimation of the MLR coefficients. For the reconstruction of pCO2, with
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this identifiable point, it is quite easy to organize a system of flag. This flag can give an
information about the quality in function of the position of the neurons. The difference
obtained for pCO2 in each neuron range from 0 to 56 µatm (Table 2), but 58 % of the
values observed are under 30 µatm of difference. The difference for each parameters
can be quite high for some parameter like SST rwith a maximum value of 1.9 ◦C, but5

most of the value are lower than 1 ◦C and CDOM range between 0 and 5.15 (Table 2).
The other parameters have quite low variability like MLD range between 0 and 9.7 m.
The average is between two or three time lower than the maximum value observed,
which give low value for all the satellite parameters.

The validation data set give a quite good correlation (R = 0.93) with the reconstruc-10

tion method (Fig. 12), the root mean square (RMS) is 36.7 µatm. 12 % have a value
higher than 20 µatm and 45 % between 20 µatm and 30 µatm (Fig. 13). The character-
istic in time, SST, MLD, CDOM, Chl and NPP, do not explain the difference observed in
the reconstruction.

A reconstruction has been done with the satellite data from 1997 to 2011. The sea-15

sonal cycle is well reproduced and in agreement with other studies. The maximum is
observed during winter with 437 µatm in average and 274 µatm in summer. This values
are comparable to the average estimated in central Baltic with 500 µatm in summer and
150 µatm in winter (Wesslander, 2011). In April, the pCO2 decrease due to the biology
and increase slowly in September (Fig. 14).20

A simple flag was constructed to monitor the reconstruction quality. The flag is equal
to 1 for classes where the average difference is lower than 20 µatm, equal at 2 for a dif-
ference between 20 µatm and 30 µatm and equal at 3 for higher average differences.
In the example shown here the values are high (3) so the confidence on the recon-
struction is low but some point have flag of 1 or 2 (Fig. 14d–f) and the reconstruction25

is more reliable. On the geographic map (Fig. 14d–f) the values of 4 correspond at the
presence of ice which is estimated with the satellite product of the National Snow and
Icea and Ice Data Center based on NOAA Level 3 products (Njoku, 2007).

12271

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/12255/2014/bgd-11-12255-2014-print.pdf
http://www.biogeosciences-discuss.net/11/12255/2014/bgd-11-12255-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 12255–12294, 2014

Remote sensing
algorithm for sea

surface CO2

G. Parard et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The flag gives a confidence in our reconstruction, like in March 2010 (Fig. 14a),
where the south of the map (Bornholm Basin and Arkona Basin) show lower pCO2
value than the North and than February (not show here). This region in March 2010
corresponds to a flag of 2, which was attributed a medium confidence. In July 2010,
the flag is quite good and the variability of pCO2 seems in agreement with the monthly5

variability (Fig. 14b and e). In September 2010, the value of pCO2 has a good order of
magnitude when the flag is 2 but seems little to high when there is a poor confidence
(3) (Fig. 14c and f).

In conclusion, the reconstruction of pCO2 need to be improve to increase the con-
fident in our product, but this version seems in agreement with the evolution of the10

data.

4 Discussion and conclusions

In this paper, two methods previously used in separate studies relating to the recon-
struction of the pCO2 from satellite data in maritime regions, were combined to esti-
mates the pCO2 in the Baltic Sea. These methods, the Self Organizing Maps (SOM)15

and Multiple Linear Regression (MLR) were used to palliate the non-linearity of the
mechanics driving the pCO2 through the use of artificial networks, but retain a more
detailed reconstruction than an average of a classification by using MLR in each class.
The process involves classifying the explicative parameters (SST, CDOM, Chl, time,
NPP and MLD) and then using the linear regression coefficients corresponding to that20

class in order to reconstruct the pCO2. In the reconstruction obtained, by making use
of the statistics obtained on each of the classes, is it possible to add a flag to each class
to inform us on the quality of the reconstruction obtained. This could be important for
the numerical modeling of other phenomena depending on the pCO2 as well as the
informed interpretation of the reconstructions obtained.25

The current results with this method based on 1445, gave a high coefficient correla-
tion of 0.93 % and a RMS of 36 µatm. In addition to having a limited amount of in-situ
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pCO2 measurements, the colocalized satellite data were frequently incomplete. This
lead us to having to complete our database using a novel imputation method based on
SOMs.

In comparison, existing studies performed over the North Atlantic and North Pacific,
based on at a minimum 10000 data points (which take into account all the data from5

SOCAT) to at maximum 800 000 data (e.g. Friedrich and Oschlies, 2009; Landschützer
et al., 2013; Hales et al., 2012). Friedrich and Oschlies (2009) had a RMSE error of
19 µatm. A similar study over the totality of the Atlantic Ocean give a RMSE of 17 µatm
for the independent time series (Landschützer et al., 2013). Hales et al. (2012) had
a RMS deviation of 20 µatm with a correlation coefficient of 0.81. The RMSE obtained in10

our study were higher than the previous study in Atlantic Ocean, but, taking into account
the highly reduced amount of data available, the results presented are promising.

The organisation of the values different coefficients of the MLR over each class as-
certained that all the parameters from satellite data are important to reconstructing
the pCO2 in the Baltic Sea, even if it is for some particular cases. Therefore the im-15

provement of the satellite data availability could also improve the performance of our
reconstruction.

The methodological approach presented could potentially be further developed when
reconstructing spatial fields of pCO2 by taking the information of the classes attributed
to the neighbouring grid points of geographic study area, when selecting the class20

whose linear regression coefficients to use in the reconstruction of the pCO2. This
aspect is however dependent on the acquisition of additional in-situ measurements.

There exist many programs in place for the acquisition of new data. The data at
Östergarnsholm site are still forthcoming, the year 2012 did not give too much data
but 2013 and 2014 need to be validated. The SMHI station also continue in time25

could be also add to our data. The VOS transect are not yet available for 2012 to
2014 but this measurement will also in continue, and some data will soon be avail-
able. There also some data from ferry boat from Gothenburg (Gothenburg–Kemi–
Oulu–Lübeck–Gothenburg). The Gothenburg transect is weekly http://www.hzg.de/
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imperia/md/content/ferryboxusergroup/presentations/fb-ws2011_karlson.pdf. The first
test was made in 2010 and 2011 so some data could be soon available. New measure-
ment of pCO2 began in 2012 at the Utö Atmospheric and Marine Research Station
http://en.ilmatieteenlaitos.fi/GHG-measurement-sites#Uto.

Given the amount of new data soon to be available we remain optimistic that the5

comprehension and statistical modeling of the pCO2 in the Baltic Sea will continue to
improve in the coming years.
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Table 1. Number of missing values for each parameter of the satellite data for the October–
March and April–September periods. The number in parenthesis correspond of the total of
point in each period.

Parameter October–March (685) April–September (814)

SST 28 0
Chl 202 24
CDOM 320 5
NPP 468 571
MLD 6 2
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Table 2. Maximum and mean value observed in the difference between the data used for the
trainee and the value in the neurons.

Parameter Maximum Average

pCO2 (µatm) 56,4 29.15
SST (◦C) 1.9 0.98
time(cos) 0.33 0.07
Chl (mg m−3) 0.14 0.06
time(sin) 0.4 0.06
CDOM 5.15 0.06
NPP (mg m−3) 1.19 0.25
MLD (m) 9.7 3.2
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Figure 1. Map of the Baltic Sea. The major basins and sea regions are named.

2. Cargo ship : this data set come from continuous measurements of the surface water pCO2.

They take place in the Baltic Sea using a fully automated measurement system deployed on a

cargo ship. The Leibniz Institute for Baltic Sea Research, Warnemünde, Germany (IOW—Institut

für Ostseeforschung Warnemünde) has made continuous measurements of pCO2 at a depth of

5 m on board the cargo vessel Finnpartner. This ship crosses between Lübeck and Helsinki at95

a two-day interval, alternately crossing the eastern and western Gotland Sea (Schneider and

Kaitala, 2006; Schneider et al., 2009). Data from Finnpartner were taken between July 2003

to December 2005.

3. Swedish Meteorological and Hydrological Institute (SMHI) data set: pH ( measured with the

method from Grasshoff et al. (1999)) and alkalinity (TA) (measured by potentiometric titration100

described in Grasshoff et al. (1999)) are measured continuously at a monthly or semi-monthly

resolution in the Baltic Sea at different stations. All data used are from 5 m depth below the

surface. The uncertainty for the pH is ± 0.03 pH units and for the TA is ±5% (Wesslander

et al., 2009). pCO2 is estimated from the pH, TA, salinity and temperature measurements and

4

Figure 1. Map of the Baltic Sea. The major basins and sea regions are named.
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Figure 2. Monthly data available from 1998 to 2011 in Baltic Sea. The colorbar described the pCO2 value in

µ atm

2.5 Methodology

The relationship between pCO2 and the environmental parameters available is highly non-linear.

As mentioned in the introduction, we chose to combine two statistical approaches: self-organizing

maps (Kohonen, 1990; Dreyfus, 2005) and linear regression. The SOM are a subfamily of the200

neuronal networks algorithms, used to perform multidimensional classification. One of the defining

characteristics of the SOMs is their ability of their classes to locally represent a gaussian distribution

centred around its typical profile of the environmental parameters. We used this hypothesis to classify

the environmental parameters dataset, and then estimate for each class the parameters of a linear

regression. In the following section we will present an overview of the two statistical algorithms and205

their application to our data sets.

8

Figure 2. Monthly data available from 1998 to 2011 in Baltic Sea. The colorbar described the
pCO2 value in µatm.
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Figure 3. Histogram showing number of observations for each month of the year.

2.5.1 Self Organizing Maps

Self-organizing topological maps (SOM) is a clustering method based on neural networks. They

provide a clustering of a learning data set into a reduced number of subsets, called classes, with

common statistical characteristics.210

The generation of a SOM requires the creation of a training database that contains homogenous

vectors. After a training phase, we obtain a Self-Organizing Map. Each class is represented by its

referent vector ri which is an approximation of the mean value of the elements belonging to it and it

index that positions it on the map in relation to the other classes (Figure 4). The topological aspect of

the maps can be justified by considering the map as an undirected graph on a two-dimensional lattice215

whose vertices are the N classes. This graph structure permits the definition of a discrete distance

d(Ci,Cj) between two classes Ci and Cj , defined as the length of the shortest path between Ci and

Cj on the map. The nature of the SOM training algorithm forces a topological ordering upon the map

and, therefore, any neighbouring classes Ci and Cj on the map (d(Ci,Cj)=1) have referent vectors ri

and rj that are close in the Euclidean sense in the data space.220

Let us consider a vector x that is of the same dimensions and nature as the data used to generate

the topological map; we can find the index of the class to which it is classified by choosing: index=

argmaxi (||x-ri||), therefore assigning it to the class whose referent is closest to it in the Euclidean

sense (Figure 5). A classified vector x will be represented by its class index, Cindex. In the case we

are trying to classify a vector that has some missing values, the comparison is performed between225

the existing values of x and the corresponding values of each ri.

9

Figure 3. Histogram showing number of observations for each month of the year.
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Figure 4. The different elements of the training of the self-organizing map.

As a version of the Expectation–Maximization algorithm the SOM algorithm perform an iterative

training. During the early phases of this training, the referent vectors of each class are strongly

affected by the changes imparted on their neighbours’ referent vectors in order to capture the shape of

the data cloud. Depending on the training parameters of the SOM, in the latter phases of the training,230

the effect of the neighbouring vectors on the determination of the referent vector can be considered

null. In these cases, each referent vector approximates, locally, the mean value of a multidimensional

Gaussian random distribution that generated the training data assigned to that class (Dreyfus, 2005).

2.5.2 Multiple Linear Regression

A multiple linear regression is a modelling method that expresses the value of one response variable235

y (in our study pCO2) as a linear function of other explicative variables X=X1,X2,...,Xi (in our

study SST, Chl, CDOM, NPP, MLD, timesin, timecos). The purpose of performing a a multiple

linear regression generally is either to interpret the relationship of the variable y with each of the

other predictive variables Xi, or to predict, from a dataset of vectors containing the values of X, the

corresponding value of y. In this paper, we used both aspects of MLR.240

However, in order to perform our MLRs, we had to take into account their limitations and the

nature of our problem. More specifically, in order to perform a MLR we are obliged to assume that

10

Figure 4. The different elements of the training of the self-organizing map.
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Figure 5. Adjacent classes on the SOM lattice correspond to adjacent areas in the multidimensional data space.

the relationship between the predictor variables and the response variable is linear. However, this

is not the case in our data sets. The pCO2 does not follow a linear relationship with the variables

presented when considering the entirety of the problem presented. However as noted above in sub-245

section 2.5.1, if we consider the classes created by the SOM, they are very localised regions of the

combined explicative and response data space that can be considered to approximate, locally, the

mean value of a multidimensional Gaussian random distribution. We therefore make the assumption

that, if performed in the reduced neighbourhood of a SOM class, the relationship between pCO2 and

the explicative variables is linear.250

3 Application and Results

3.1 Statistical imputation

As described in section 2.4, the data available for the application were presenting many missing

values. In order to complete them we chose to use an imputation method similar to those described

by Schafer and Graham (2002) and Malek et al. (2008). The main idea of these methods is to use255

the classifying abilities of the SOMs in order to regroup the data in typical situations and replace

11

Figure 5. Adjacent classes on the SOM lattice correspond to adjacent areas in the multidimen-
sional data space.
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Figure 6. A schematic representation of the imputation method used.

the missing values of the explicative data with the corresponding values of the referent vector of the

class it belongs to.

We first selected the database containing, as mentioned before: SST, Chl, CDOM, NPP, MLD,

timesin, timecos. We then sorted its vectors according to the number of missing values in them and260

noting the placement of missing values for each vector. We chose all complete data vectors and the

first 5% of the sorted vectors with missing data and trained a SOM. We proceeded by replacing the

missing values of these initial 5% with the corresponding values of the referent vector of the class

they each belonged to. We performed the same process by iterativelly increased by 5% the amount of

the vectors with missing values included in the training of a new SOM, and by replacing all missing265

values, even those completed in previous iterations, by the corresponding values of the referent

vector of the class that each vector with missing values belonged to. A more detailed presentation of

this method is the subject of another forthcoming article, but a schematic representation version of

the imputation method used can be seen in figure 6.

After this imputation of the missing data through the iterative training give a good representation270

of the data as presented in figure 7. The repartition of pCO2 (figure 7,a) is well representative of

the variability of the data with a large range of value. Some very high in particular local events like

a coastal upwelling but most of the data are range between 180 µatm (value observed in summer)

and 550 µatm (observed in winter). The SST (figure 7,b) is well representative of the variability in

the Baltic Sea with a maximum of observation between July and September in all the basin around275

18 ◦C (Siegel and Gerth, 2012). The NPP variability is quite homogenous except the pic at 10

12

Figure 6. A schematic representation of the imputation method used.
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Figure 7. pCO2 and satellite data (SST, Chl, NPP, CDOM and MLD) available for the SOM after reconstruc-

tion.

mgC.m−2.d−1 this is due to the first model which have is maximum of NPP at 10 mgC.m−2.d−1.

So the correction on the satellite data of NPP take into account this maximum.

The variability of chlorophyll gives a part of data with a low value and an other part with a higher

value than 6 mg m−3, which can be explain by the fact that the Baltic Sea is a narrow sea so the coast280

are quite important and the two bloom take place during spring/ summer, during this period the value

of chlorophyll can be very high, and the reconstruction give a mean value for this characteristic. A

pic at 10 mg.m−3 is observed on the chlorophyll data, this pic is not due to the reconstruction but

to the maximum value in the satellite data file. The low level of MLD occurs in summer and in the

model the minimum is 10 m depth, which appear to be around the minimum value observed on the285

figure 7,f. Absorption by CDOM decreased with increased distance from the riverine source and

reached a relatively stable absorption background in the open sea. Most of our data are more in open

sea conditions, the value are quite low.

Once the data was completed we could combine the two datasets again and train the SOM used

for the reconstruction of pCO2.290

13

Figure 7. pCO2 and satellite data (SST, Chl, NPP, CDOM and MLD) available for the SOM after
reconstruction.
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Figure 8. Number of observations attributed to each class. The colorbar corresponds at the number of data used

in each neuron

3.2 pCO2 estimation

3.2.1 Topological map

In this study we classified the explicative variables (SST, Chl, CDOM, NPP, MLD, timesin, timecos)

into classes that share similar characteristics. We separated our data set in two parts: 90% of the

completed data (1300 vectors) were used for the training phase, with the remaining 10% split into 5%295

(72 vectors) for testing and 5% for the validation of our method. We iterativelly tested classifications

with varying number of classes, and selected the parameters of our SOM based on the performances

on the test dataset.

At the end of our optimization, we selected a SOM consisting of 77 classes. The number of

observations captured by each class ranges from 0 to 38 (figure 8). The order of magnitude of the300

number of observations is constant throughout the SOM, and we can consider that it has been well

deployed to represent the data space of the explicatory parameters. The presence of classes that did

not capture any elements can be justified as preventive: they preserve the topological aspect of the

SOM by preventing classes that are not similar enough from becoming neighbours.

In order to estimate the average concentration of pCO2 in each class, its measurements associated305

with vectors consisting of SST, CDOM, NPP, MLD and CHL components were presented to the

already trained SOM as input data (figure 9). The average value computed for the vectors belonging

to each class corresponds to the average value of pCO2 for that class.

In the final map, the distribution of pCO2 is strongly dependent of the SST distribution with low

values of pCO2 correlating with high value of SST (figure 9). This is in agreement with the seasonal310

cycle of pCO2, which is characterized by a large amplitude, ranging from high value in winter (≈
500 µatm) and low value in summer (≈ 150 µatm) Wesslander (2011). From Schneider and Kaitala

(2006), the high winter value of pCO2 are a consequence of mixing with deeper water layer enriched

14

Figure 8. Number of observations attributed to each class. The colorbar corresponds at the
number of data used in each neuron.
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Figure 9. Distribution of each parameter in the neural map. a. pCO2 in µatm b.SST in ◦C c.and e. Time

respectively cosine and sine, d. Chla in mg.m−3, g. NPP in mgC.m−2 and h. MLD in m.

in CO2 which is in agreement with the distribution of the MLD ( figure 9,h) with the higher value

during winter and autumn correlate with the high value of pCO2. Wesslander (2011) explained also315

that it can be related to the mineralization, which exceed production in winter. Biological produc-

tion starts in spring when sunlight and nutrients are sufficient. The chlorophyll begin to increase in

March/April due to the spring phytoplankton bloom, which have for effect to reduce the pCO2 dur-

ing this period. The more intensive decrease take place in April and May which is consistent with the

higher value of NPP (figure 9). The studies in the central Baltic Sea shows two summer minima, the320

first is in April/May and a second July /August which is resulting from a second production period.

The higher variability are observed during this period with standard deviation between 39 µatm and

50 µatm from different region (Wesslander, 2011; Schneider and Kaitala, 2006).

3.2.2 Linear regression in the neurons

As mentioned in section 2.5.2, in order to perform a MLR we are obliged to assume that the rela-325

tionship between the predictor variables and the response variable is linear, which we could only

take as a valid hypothesis when performing the MLR in the reduced neighbourhood of a SOM class,

where the relationship between pCO2 and the explicative variables can be assumed to be linear.

15

Figure 9. Distribution of each parameter in the neural map. (a) pCO2 in µatm (b) SST in ◦C
(c and e) time respectively cosine and sine, (d) Chl a in mg m−3, (g) NPP in mg C m−2 and (h)
MLD in m.
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Figure 10. Coefficient from linear regression for each parameters. a.SST in ◦C b.and d. Time respectively

cosine and sine, c. Chla in mg.m−3, f. NPP in mgC.m−2 and g. MLD in m.

For each class j therefore we created a separate training data set containing all vectors that were

assigned to that class and to all its adjacent classes. Based on that data-set we computed the linear330

regression coefficient parameters for every explicative parameter and a constant value.

The calculated linear regression coefficient parameter values for each class are shown in figure 10.

We can notice that all parameters are important in specific regions of the SOM, having both positive

and negative correlations in different classes.

More importantly, the fact that each parameter has a significantly varying range of values over the335

different classes demonstrated that each and every parameter is important in the reconstruction of

the pCO2 in the Baltic Sea, even if it is highly significant in some particular classes and relatively

stable in other regions of the topological map.

The addition of vectors belonging to adjacent classes in general did not perturb the estimation of

the coefficient parameters since, as seen in figure 9, the values of all parameters are generally orga-340

nized in a coherent fashion on the map. The assumption that they are close in the data space is not as

robust as it would have been had we solely considered the vectors belonging to each class but, given

the limited amount of data available for the modeling of this highly non-linear and complex system,

we would not have sufficient elements to correctly estimate the linear regression coefficients. Given

the projected increase in available data in the coming years, further applications of this approach345

will limit themselves to the elements belonging to each class.

16

Figure 10. Coefficient from linear regression for each parameters. (a) SST in ◦C (b and d) time
respectively cosine and sine, (c) Chl a in mg m−3, (f) NPP in mg C m−2 and (g) MLD in m.
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Figure 11. a. The colorbar represents the average difference in each neuron for pCO2. b. The colorbar represents

the standard deviation (std) in each neuron for pCO2.For a. and b. the number inside the neurons correspond at

the number of data.

3.2.3 Validation of reconstruction

In order to validate our results, we calculated the difference and the standard deviation (std) between

the value of pCO2 reconstructed in each neurons and the observations which define the neurons

(figure 11). In average the std is around 38 µatm and the difference is observed between 30 to 25350

µatm. Nevertheless some points with higher value can be identified (in red in figure 11). These values

are explained by the position of these points, which are at the edges of the cloud, therefore more

likely to include outliers that disturbed the estimation of the MLR coefficients. For the reconstruction

of pCO2, with this identifiable point, it is quite easy to organize a system of flag. This flag can give an

information about the quality in function of the position of the neurons. The difference obtained for355

pCO2 in each neuron range from 0 to 56 µ atm (table 2), but 58% of the values observed are under

30 µatm of difference. The difference for each parameters can be quite high for some parameter

like SST rwith a maximum value of 1.9 ◦C, but most of the value are lower than 1◦C and CDOM

range between 0 and 5.15 (table 2). The other parameters have quite low variability like MLD range

between 0 and 9.7 m. The average is between two or three time lower than the maximum value360

observed, which give low value for all the satellite parameters.

The validation data set give a quite good correlation (R=0.93) with the reconstruction method

(figure 12), the root mean square (RMS) is 36.7 µatm. 12% have a value higher than 20 µatm and

45 % between 20 µatm and 30 µatm (figure 13). The characteristic in time, SST, MLD, CDOM, Chl

and NPP, do not explain the difference observed in the reconstruction.365

A reconstruction has been done with the satellite data from 1997 to 2011. The seasonal cycle is

well reproduced and in agreement with other studies. The maximum is observed during winter with

437µatm in average and 274µatm in summer. This values are comparable to the average estimated

17

Figure 11. (a) The colorbar represents the average difference in each neuron for pCO2. (b)
The colorbar represents the standard deviation (std) in each neuron for pCO2. For (a) and (b)
the number inside the neurons correspond at the number of data.
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Table 2. Maximum and mean value observed in the difference between the data used for the trainee and the

value in the neurons

Parameter Maximum Average

pCO2 (µatm ) 56,4 29.15

SST (◦C) 1.9 0.98

time(cos) 0.33 0.07

Chl (mg.m−3) 0.14 0.06

time(sin) 0.4 0.06

CDOM 5.15 0.06

NPP (mg.m−3) 1.19 0.25

MLD (m) 9.7 3.2

Figure 12. pCO2 reconstructed and measured for the validation data set

in central Baltic with 500 µatm in summer and 150 µatm in winter (Wesslander, 2011). In April, the

pCO2 decrease due to the biology and increase slowly in September (figure 14).370

A simple flag was constructed to monitor the reconstruction quality. The flag is equal to 1 for

classes where the average difference is lower than 20 µatm, equal at 2 for a difference between 20

µatm and 30 µatm and equal at 3 for higher average differences. In the example shown here the

values are high (3) so the confidence on the reconstruction is low but some point have flag of 1 or 2

(figure14d,e and f) and the reconstruction is more reliable. On the geographic map (figure14d,e and375

f) the values of 4 correspond at the presence of ice which is estimated with the satellite product of

the National Snow and Icea and Ice Data Center based on NOAA Level 3 products Njoku (2007).

The flag gives a confidence in our reconstruction, like in March 2010 (figure 14,a), where the

south of the map (Bornholm Basin and Arkona Basin) show lower pCO2 value than the North and

than February (not show here). This region in March 2010 corresponds to a flag of 2, which was380

attributed a medium confidence. In July 2010, the flag is quite good and the variability of pCO2

seems in agreement with the monthly variability (figure 14,b. and e.). In September 2010, the value

18

Figure 12. pCO2 reconstructed and measured for the validation data set.
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Figure 13. Difference between pCO2 reconstructed and measured for the validation data set.

Figure 14. a.b.c. Reconstruction of the pCO2 map and d.,e. and f. The flag for each map in a.,d. March

2010,b.,e. July 2010 c.,f. September 2010. The flag value correspond to: 1:high confidence, 2: medium confi-

dence 3 poor confidence.

of pCO2 has a good order of magnitude when the flag is 2 but seems little to high when there is a

poor confidence (3) (figure 14,c. and f.).

19

Figure 13. Difference between pCO2 reconstructed and measured for the validation data set.
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Figure 13. Difference between pCO2 reconstructed and measured for the validation data set.

Figure 14. a.b.c. Reconstruction of the pCO2 map and d.,e. and f. The flag for each map in a.,d. March

2010,b.,e. July 2010 c.,f. September 2010. The flag value correspond to: 1:high confidence, 2: medium confi-

dence 3 poor confidence.

of pCO2 has a good order of magnitude when the flag is 2 but seems little to high when there is a

poor confidence (3) (figure 14,c. and f.).

19

Figure 14. (a–c) Reconstruction of the pCO2 map and (d–f) the flag for each map in (a and d).
March 2010 (b and e). July 2010 (c and f) September 2010. The flag value correspond to: 1:
high confidence, 2: medium confidence, 3: poor confidence.
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